Almost Alternating Knots Producing an Alternating Knot

SUMIKO HORIUCHI and YOSHIYUKI OHYAMA

Department of Mathematics,
College of Arts and Sciences,
Tokyo Woman’s Christian University,
2-6-1, Zempukuji, Suginami-ku,
Tokyo, 167-8585, Japan
*horiuchi@cis.twcu.ac.jp
†ohyama@lab.twcu.ac.jp

Accepted 17 February 2009

Dedicated to Professor Akio Kawauchi for his 60th birthday.

Abstract

Adams et al. introduce the notion of almost alternating links; non-alternating links which have a projection whose one crossing change yields an alternating projection. For an alternating knot K, we consider the number $\text{Alm}(K)$ of almost alternating knots which have a projection whose one crossing change yields K. We show that for any given natural number n, there is an alternating knot K with $\text{Alm}(K) \geq n$.

Keywords: Almost alternating knot; alternating knot.

Mathematics Subject Classification 2010: 57M25

1. Introduction

The notion of almost alternating links is introduced by Adams et al. [2]. A projection of a link L is almost alternating if one crossing change makes the projection alternating. The crossing point on the almost alternating projection which produces an alternating projection is called the dealternator. A link L is almost alternating if L has an almost alternating projection and does not have an alternating projection. We note that an almost alternating link has infinitely many almost alternating projections by using the move at a dealternator in Fig. 1 repeatedly. Then for an almost alternating knot L, there are infinitely many alternating knots which guarantee that L is an almost alternating.

Conversely, for an alternating knot K, we consider an almost alternating knot L which has a projection whose one crossing change produces K. In the case there exists an almost alternating knot L producing an alternating knot K, if we change
the crossing corresponding to the dealternator on an alternating projection of K, we have a projection of L.

For an alternating knot K, by $\text{Alm}(K)$, we denote the number of almost alternating knots which have a projection whose one crossing change yields K.

Since the knots whose minimum crossing numbers are less than or equal to 7 are alternating, we have Proposition 1.1.

Proposition 1.1. Let $c(K)$ be the minimum crossing number of a knot K. If K is an alternating knot with $c(K) \leq 7$, then $\text{Alm}(K) = 0$.

In this paper, we show the following:

Theorem 1.2. For any given natural number n, there is an alternating knot K with $\text{Alm}(K) \geq n$.

2. **Proof of Theorem 1.2**

Let L_i be an alternating knot as is shown in Fig. 2 and L'_i the knot which is obtained from L_i by changing the crossing at c_i ($i = 1, 2, \ldots, n$). Let $K = L_1 \sharp L_2 \sharp \cdots \sharp L_n$ and $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ ($i = 1, 2, \ldots, n$). Then, K is an alternating knot and K_i has an almost alternating projection whose one crossing change yields the alternating projection of K.
By spanning a Seifert surface according to the Seifert algorithm, we have the following $(2^i + 4) \times (2^i + 4)$ Seifert matrix M_i for L_i'.

$$M_i = \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
\end{pmatrix}.$$

Then, we have

$$\det(M_i - tM_i^T) = \begin{vmatrix}
-1 + t & 1 & 0 & -t & -t & 0 \\
-t & -1 + t & 1 & 0 & 0 & 0 \\
0 & -t & -1 + t & 0 & 0 & 0 \\
1 & 0 & 0 & -1 + t & 0 & 0 \\
1 & 0 & 0 & 0 & -1 + t & -t \\
0 & 0 & 0 & 0 & 1 & -1 + t \\
0 & 0 & 0 & 0 & 1 & -1 + t \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-t & 0 & 0 & 0 & 0 & 0 \\
-1 + t & -t & 0 & 0 & 0 & 0 \\
1 & -1 + t & -t & 0 & 0 & 0 \\
0 & 1 & -1 + t & -t & 0 & 0 \\
0 & 0 & 1 & -1 + t & -t & 0 \\
0 & 0 & 0 & 1 & -1 + t & 0 \\
0 & 0 & 0 & 0 & 1 & -1 + t \\
\end{vmatrix}.$$

Let $\Delta_{L_i'}$ be the Alexander polynomial of L_i'. The following formulas are obtained:

$$\Delta_{L_1'} = (t^2 + 1)\Delta_{L_{i-1}} - t^2\Delta_{L_{i-2}}.$$

$$\Delta_{L_2'} = (t^5 - 1)(t - 1) + t^3.$$

$$\Delta_{L_2'} = (t^7 - 1)(t - 1) + t^3(t^2 - t + 1).$$

By induction, it follows that

$$\Delta_{L_i'} = (t^{2i+3} - 1)(t - 1) + t^3\sum_{k=0}^{2i-2} (-t)^k$$

$$= t^{2i+4} - t^{2i+3} + t^{2i+1} - t^{2i} + \cdots + t^3 - t + 1. \quad (2.1)$$

Theorem 2.1 [4]. For an alternating knot K, all coefficients from the lowest degree to the highest degree of Δ_K are non-zero.
From (2.1), the coefficients of t^{2i+2} and t^2 of $\Delta L_i'$ are zero. Then we have Lemma 2.2.

Theorem 2.2. The knot L'_i ($i = 1, 2, \ldots, n$) is non-alternating.

Let P be the projection plane on which the projection \tilde{L} of a link L exists. Menasco [3] shows Theorem 2.3.

Theorem 2.3 [3]. Let L be a non-split alternating link. For each disc D on the projection plane P with ∂D meeting an alternating projection \tilde{L} in just two points, if $\tilde{L} \cap D$ is an embedded arc, L is prime.

By using Lemma 2.2 and Theorem 2.3, we have Lemma 2.4.

Lemma 2.4. The knot $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ ($i = 1, 2, \ldots, n$) is non-alternating.

Proof. By Theorem 2.3, if K_i is a non-prime alternating knot, then there is a disc D with ∂D meeting an alternating projection \tilde{K}_i in just two points such that the interior and the exterior of D represent factor knots. And these factor knots are alternating. By Lemma 2.2, L'_i is non-alternating. Therefore, $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ is non-alternating.

Lemma 2.5. The knot types $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ and $K_j = L_1 \sharp L_2 \sharp \cdots \sharp L'_j \sharp \cdots \sharp L_n$ ($i < j, i, j = 1, 2, \ldots, n$) are different.

Proof. The knot $K_i (i = 1, 2, \ldots, j - 1)$ has the alternating knot L_j with minimum crossing number $2j + 7$ as a factor knot. However, K_j does not have L_j as a factor knot. Therefore, K_i and K_j are different knot types. Since it holds for any $j (j = 2, 3, \ldots, n)$, we have Lemma 2.5.

By Lemma 2.4, each $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ ($i = 1, 2, \ldots, n$) is an almost alternating knot whose one crossing change yields $K = L_1 \sharp L_2 \sharp \cdots \sharp L_n$. By Lemma 2.5, K_i and K_j ($i \neq j$) represent different knot types. This completes the proof of Theorem 1.2.

Acknowledgment

The authors would like to thank Prof. Kouki Taniyama for his valuable suggestions.

References

